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It is shown that special and general relativity can be derived as low-energy 
approximations from the nonrelativistic quantum chaos of a vortex sponge. If 
the average distance of separation between the filaments of the vortex sponge 
is chosen to be ~10-3~ a value suggested by the grand unified scale of 
elementary particle theories, the vortex core radius becomes about equal to the 
Planck length. The model permits a simple explanation of the phenomenon of 
charge, and in conjunction with a hypothesis by A. D. Sakharov, can explain 
Dirac spinors. 

1. I N T R O D U C T I O N  

Quantum field theory predicts a divergent toLfrequency spectrum of 
the vacuum zero-point energy fluctuations, the only spectrum which is 
invariant under a Lorentz transformation, Since a divergent vacuum energy 
is obviously a physical impossibility (it would lead to large gravitational 
fields), there must be a cutoff, most likely at some very high energy. The 
existence of  such a cutoff would still make the vacuum energy very large, 
but this large energy might be compensated by a large cosmological constant. 
In any case, Lorentz invariance would be destroyed above the contemplated 
cutoff energy. Gauge theories of  elementary particles suggest a unification 
of  all interactions at a very high energy, estimated to be around 1016 GeV. 
It is therefore a plausible hypothesis that this energy coincides with the 
conjectured cutoff energy, and that at and above this energy the fundamental 
kinematic symmetry in nature might be the Galilei group, broken below 
this energy into the Lorentz group. 

We therefore make here the assumption that the vacuum, at and above 
~1016 GeV, can be described by a superfluid state having a large number 
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of quantized vortex filaments. Such a configuration is sometimes called a 
vortex sponge. It  was studied by Thomson (1887) as a mechanical  aether 
model  to describe the properties of  electromagnetic waves derived from 
Maxwell 's  equations. To establish a connection to the conjectured 
unification energy of  all interactions at ~1016GeV, we assume that the 
average distance between the vortex filaments is about r~ ~ 10 -3o cm, with 
m c  2 ~  hc/rl ~ 1016 GeV. 

2. F O R M A T I O N  OF T H E  VORTEX S P O N G E  

It is known from many experiments in classical fluid dynamics that for 
a value of the Reynolds number  Re - 106 (Re = rv/v, v = kinematic viscosity) 
the frictional drag is minimized. Frictional dissipation of  a fluid leads to 
solutions for the velocity field of  the form 

v oc e x p ( - c o n s t ,  vt/r  2) (1) 

In a superfluid the viscosity is zero, but there the imaginary quantity 
vQ= ih /m has the same dimension as a viscosity, and by naively replacing 
v with vQ, one would have instead 

v oc e x p ( -  i const,  l UQI t~ r 2) (2) 

Therefore, if (1) is the solution with the smallest decay rate for the value 
of  Re - 106, it is plausible that (2) is the corresponding minimum-frequency,  
and hence minimum-energy,  solution for the quantum Reynolds number  
Re ~ = irv/t,Q. 

Applied to a vortex sponge, with each vortex having the potential flow 
solution of the form v,  = cro/r, we may assume that the velocity of  the 
potential  vortex has a cutoff at r = ro where v,  = c. In a fluid composed of 
particles (for example,  superfluid helium) this cutoff length is in order of  
magnitude the mean free path h and c is there the velocity of  sound. Using 
the gas-kinetic relation u -  cA, we find for the Reynolds number  for the 
vortex core Re = cA/u = 1. Outside the vortex core curl v = O, and all the 
friction losses slowing down the vortex therefore come from the region 
within the vortex core. The effective viscosity averaged over the volume 
occupied by a line vortex within a vortex lattice of  lattice constant rl is 
therefore ~ = cA(h/r~) 2, and the averaged Reynolds number  is ~ = cA/f, = 
( r l /h )  2. Putting R-e~ 106, o n e  would obtain r I ~ 103A, which in order of  
magnitude agrees with the distance of separation between vortex filaments 
obtained by Schlayer (1928) for the Karman  vortex street. 

In analogy, one would expect for a vortex sponge of  a superfluid that 

Re Q = (rff ro) 2 (3) 
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I f  Re Q -  1 0  6, this would result in 

ro  ~ 1 0  -33  c m  (4) 

which is of  the same order of  magnitude of  the Planck length (which 
otherwise requires for its derivation the velocity of  light and Planck and 
gravitational constants). With the quantum viscosity given by I~QI = h/mo, 
one would have mo = h/roC, which is the Planck mass, if the velocity of  
sound is set equal to the velocity of  light. Starting from the G U T  scale at 
r I ~ 1 0  - 3 0  cm, we therefore arrive at the Planck scale ro ~ 10-3r~ - -  10 -33 cm 
solely by using fluid dynamic arguments.  Beyond that it can be shown that 
the model even permits the derivation of  the Maxwell and Einstein vacuum 
field equations. For material objects held together by these fields, Lorentz 
invariance then follows as a dynamic symmetry,  very much as in the older, 
pre-Einstein theory of relativity of  Lorentz and Poincar6. 

3. E L E C T R O M A G N E T I C  AND GRAVITATIONAL WAVES 

According to Helmholtz (1858), the most general displacement of  a 
deformable  body  consists of  (1) a translation, (2) a rotation, and (3) a 
strain. In a solid only the displacement by a strain can lead to a disturbance 
propagated  as a wave, because only a strain generates there a stress acting 
against the deformation of  the solid. In a vortex sponge, a rotational 
displacement can also lead to a wave. It  was first recognized by Thomson 
(1887) that a vortex sponge permits the propagat ion of transverse waves 
clue to rotational displacements,  which for small amplitudes have the same 
proper ty  as the electromagnetic waves derived from Maxwell 's  equations. 
The other kind of  wave possible in a vortex sponge is similar to a transverse 
wave in an elastic body. It is associated with an elliptic deformation of  the 
vortex sponge, and can be identified with Einstein's gravitational waves. 
The strange difference in character between the electromagnetic and the 
gravitational fields has in the vortex sponge hypothesis therefore an almost  
trivial explanation, because, according to the theorem by Helmholtz,  a 
disturbance of  a body can, in general, always be decomposed  into two 
irreducible parts of  a symmetric and an antisymmetric tensor. 

To analyze the transverse waves (Winterberg, 1990a), let v = {vx, "Oy, Z)z} 
be the undisturbed velocity in the vortex sponge and u = {ux, Uy, uz} be a 
small superimposed velocity disturbance. Furthermore,  let us take only 
those solutions for which div v = div u = 0. To reduce the problem to the 
solution of  a differential equation, we must go to the cont inuum limit. This 
can be done by letting the vortex lattice constant go f rom r~ to ro, where 
ro is taken in the limit r0--~ 0. The x component  of  the equation of motion 
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for a disturbance u is 

OVx+OU____~=_(vx+ux) a(vx+ux) (Vy+Uy) 
ot at ox Oy 

_(vz+u~)  O(vx+ux) 1 0 p  
Oz p Ox 

From the continuity equation div v = 0 we have 

OV x OVy ~:~-+ vx-~-y + ~x ~ 0 0 ~  

Subtracting (6) from (5) and taking the y-z average, we find 

au~ a(v-~) a(v-~-) 
at ay az 

and similarly, by taking the x-z and x-y averages, 

aU__y= a(v-~) a(v-~) 
Ot Ox Oz 

auz o(~:~ ) a( v-;-~ ) 
at ax ay 

a(v~+u~) 
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(5) 

(6) 

(7a) 

\ ,  

(7b) 

(7c) 

We note ~ # v-~-~, because for V~Vy we took the x-z average, whereas for 
vyvx we took the y-z average. In general, v - ~  # v--~. With the condition 
div u = 0, we obtain from (7a)-(7c) 

v , v k  = - v : ,  (8) 

Taking the x component  of  the equation of  motion,  multiplying it by 
Vy, and then taking the y-z average, and the y component  multiplied by vx 
and taking the x-z average, and finally subtracting the first f rom the second 
equation, we find 

~y/ (9) 

where v 2= 2 2 _  2 vx = Vy - v~ is the average microvelocity of  the vortex lattice. 
Putting ~bz = -VxVy/2V 2, we find that equation (9) is just the z component  
of  

- curl u (10) 
Ot 2 
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where ~b~ = -vy- f f J2v  2, ~by =-~-~x/2132. Equations (7a)-(7c) then take the 
form 

On 
- - = - 2 v  2 curl dp (11) 
Ot 

Elimination of  tb from (10) and (11) results in a wave equation for u, 

- ( 1 / v  2) oZu/ot2+V2u = 0 (12) 

In the collapsed vortex lattice, making the transition r~ ~ to, one should 
have for the microvelocity v 2= c 2. In this limit equation (12) describes a 
transverse wave propagat ing with the velocity of  light c. In reality, though, 
rl ~ 103ro, which means that the equation describing this wave would break 
down for wavelengths smaller than - r l .  

With v = c and putting u = E  and d~ = - ( 1 / 2 e ) H ,  we find that (10) and 
(11) have the same form as the two Maxwell vacuum field equations 

1 OH 
. . . .  curl E (13) 

c Ot 

10E 
- - -  = curl H ( 14 ) 
c Ot 

Adding (6) to (5) and taking the average over x, y, and z, we have 

au____~= av 2 av--;~ av-~-z-~ (15a) 
at ox oy oz 

and similarly 

Ou_zy: OV-~y Ov-~ OvTv~ (15b) 
Ot Oy Oz Ox 

a u__z~ = _ o v ~ o v - v ~  o v-v~ 
(15c) 

Ot Oz Ox Oy 

Combining (15a)-(15c) with the condition div u leads to 

0 2 
- -  ( v - ~ )  = 0 ( 1 6 )  
oxi OXk 

and for (15a)-(15c) we can write 

OU k 0 - ( v - - ~ )  

Ot Ox  i 
(17) 
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Multiplying the vi component of the equation of motion with Vk, its 
vk component with v~, adding both, and taking the average, we find 

i)2( OUi .~OUk~ 

From (17) we have 

(18) 

where 

_ _  v2 { o ou,+o2uk~ _v2o2uk 
ox, at - \Tx  ] = (20)  

the latter because of divu=0. Eliminating ~ from (19) and (20) and 
putting as before v 2= c 2 finally results in 

a2 Uk = C 2 02 Uk 
Ot 2 Ox~ (21) 

or 
1 OZu 

V2U C20t 2 = 0 (22) 

We claim that (22) can be interpreted as a linearized gravitational wave 
equation derived from Einstein's gravitational field theory. To demonstrate 
this equivalence, we consider a gravitational wave propagating in the x 
direction. It is described by the following line element (Landau and Lifshitz, 
1975): 

ds 2= ds~ + h22 dx 2 + 2h23 dx2 dx 3 -F h33 dx 2 (23) 

where 

h22 = -h33 = f ( t -  x / c )  
(24) 

h2s= g( t -  x /  c) 

w i t h f  and g two arbitrary functions, and ds~ the line element in the absence 
of a gravitational wave. A deformation of an elastic body can likewise be 
described by a distorted line element as follows (Landau and Lifshitz, 1970): 

ds2=ds2o+2e,kdx, dXk; i, k =  1,2,3 (25) 

eik 2 kaXk axi/  (26) 

and from (18) 

O 

a 2 uk a 

Ot 2 Ot Ox~ (v--~) (19) 
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In (26),  e = (ex, Ey, e x )  is the d i sp lacement  vector,  which  is related to the 
ve loc i ty  disturbance vector  u by 

OE 
u = - -  (27) at 

In an elastic m e d i u m ,  transverse waves  obey  the wave  equat ion 

_~  O=e = 0 (28) V2e Ot= 
w h i c h  because  o f  (27) is the same  as (22).  From the condi t ion  div u = 0 and 
(27) it f o l l ows  div e = 0. 

For a transverse wave  propagat ing into the x direct ion,  ex = el = 0 and 
the condi t ion  div e = 0 leads to 

H e n c e  

Oe2 
4- - - '=  e22+ e33 = 0 (29) 

Ox2 Ox3 

E33 = - - E 2 2  (30) 
For the identi f icat ion with a gravitational  wave  one  has to put 

2eik = hik (31) 

Figure 1 i l lustrates h o w  an e lec tromagnet ic  and a gravitational wave  
distort a vortex  lattice, c o m p o s e d  o f  vortex rings. 
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Fig. 1. D e f o r m a t i o n  Of the vortex lattice for  an e lec tromagnet ic  wave  and  a gravitat ional  wave.  
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4. LORENTZ INVARIANCE 

If solid bodies are held together by electromagnetic forces, or forces 
acting like them, Lorentz invariance can be explained as a dynamic sym- 
metry, because if all interactions holding the body together behave like the 
electromagnetic interactions, all clocks should behave like light clocks, and 
the combined effect of the Lorentz contraction and anisotropic light propa- 
gation in a moving frame makes a light clock move slower by the same 
factor (1 -u2/c2)  1/2 as in special relativity (Prokhovnik, 1967). The Lorentz 
contraction alone is therefore sufficient to derive the Lorentz transformations 
as a dynamic symmetry for objects in a state of internal equilibrium. How 
Lorentz transformations can be interpreted as Galilei transformations with 
physical length and time contractions has been shown by Wilhelm (1988). 

5. NONLINEARITY OF GRAVITATIONAL FIELD 

The nonlinearity of the gravitational field, which at first sight does not 
seem to be apparent from the linear gravitational wave solution (24), follows 
from an argument by Gupta (1954). By a space-time coordinate transforma- 
tion, the wave equation 

1 02 t-~-7x2 hik=O, i , k = 1 , 2 , 3 , 4  (32) 
c 20t 2 

can be brought into the form (Landau and Lifshitz, 1975) 

[ ~  =0, i , k = 1 , 2 , 3 , 4  (33) 

with the subsidiary (gauge) condition 

Ot)~=O (34) 
Ox k 

where the tensor ~O~ represents the gravitational field. According to the 
minimum coupling principle, the gravitational field equation in the presence 
of matter has the form 

7qq,~ = xO~, x = const (35) 

where | is a four-dimensional, relativistically invariant symmetric tensor 
which because of (34) obeys the conservation equation 

0 0 ~ = 0  (36) 
ax k 

The only physically possible invariant tensor obeying Lorentz invariance 
as a dynamic symmetry and satisfying the conservation law (36) is the total 
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energy-momentum tensor of  matter and gravitational field. As was shown 
by Gupta,  by splitting O k into a matter part T k and a gravitational field 
part t k , 

O~= T~+t~ (37) 

we can bring the field equation (35) into Einstein's form 

Rik - -  l g,gR = x T~k ( 38) 

where it is expressed as a field equation in a non-Euclidean space-time 
manifold. According to our model, where space is Euclidean and time 
absolute, with special relativity caused by true physical deformations, the 
reason why the field equation can be formulated by a non-Euclidean 
manifold has nothing to do with a supposedly curved space-time. It rather 
results from the principle of equivalence, whereby all bodies, given the 
same initial conditions, follow the same trajectory. As in the dynamic 
interpretation of  special relativity, where the Minkowskian space-time mani- 
fold is seen as an illusion caused by a true deformation of  bodies, a 
Riemannian manifold must here be seen as an illusion as well, caused by 
true physical deformations in conjunction with the illusion generated by 
the nonlinearity of the field equations. 

6. THE ORIGIN OF CHARGE 

The phenomenon of  charge is explained in the model as follows: At 
the scale ro, masses mo are bound in the core of  vortex filaments of  radius 
ro. According to the uncertainty principle, they have the zero-point energy 

rno c2~- hc (39) 
2to 

In the volume (4~r/3)r 3 the kinetic energy density due to this zero-point 
fluctuation is 

hc 
Ek ~--- 8 r----~ (40) 

The zero-point energy of the mass mo therefore leads to an attractive 
inverse-square-law field produced by virtual phonons, having their source 
in the oscillatory zero-point motion of  the mass too. If  this field has the 
strength F, the field energy density at the distance ro is 

F 2 g2 

e J -4~ r  4~rr~ (41) 

where g is the coupling constant of  the phonons to the mass mo. Equating 
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(40) with (41), one finds 

g2~_ hc (42) 

In a similar manner,  electric charge can be explained as resulting from 
zero-point directional fluctuations in the vortex sponge, and gravitational 
charge as resulting from the zero-point deformation fluctuations. 

Solitons describing elementary particles and made up from excitations 
of  the vortex sponge would interact with a coupling constant of  the order 
g ~-(hc) 1/2, and Lorentz invariance as a dynamic symmetry would be valid 
for them. Because Grog = hc, (39) is of  equal magnitude to the gravitational 
interaction energy of  two masses mo separated by the distance ro. 

7. DIRAC SPINORS 

To explain Dirac spinors with this model  is more difficult, but even 
this can be done by an extension of the model  (Winterberg, 1988, 1990b). 
It  goes as follows: With the zero-point energy cutoff at the Planck energy 
moc 2 ~  1019 GeV, the vacuum mass density would be 

Po ~ C5/hG2~ 1095 g / cm 3 (43) 

large enough to put the mass of  the entire universe in a cube with the side 
length of 1 fermi. To overcome this problem, it was suggested many  years 
ago by Sakharov (1968) that there are compensat ing negative-energy "ghost  
particles." Sakharov 's  idea lends itself to the pole-dipole  particle model of  
H6nl  and Papapetrou (1939). It  can reproduce Schr6dinger 's (1930, 1931) 
"Zi t terbewegung" of the Dirac spinor, and hence the spin. As shown in 
Figure 2, the pole-dipole  particle is made up of  a positive mass m § coupled 
by an attractive force to a negative "ghost"  mass m- .  In the presence of  
an attractive force the two masses execute a circular motion around their 
center of  mass. In case one of  the masses is negative, but with both together 
having a positive mass pole m e = m §  the circular motion persists, 
except that the center of  mass is no longer between the masses, even 
though it is still located on the line connecting rn + and m- .  It is the rota- 
tional motion which causes the spin, and it has the same property as the 
Zitterbewegung. 

If Im§ > Im-I, the distance of m -  from the center of  mass is larger than 
for m § We assume that m + is at a distance re, with m -  at a distance rc + r. 
Furthermore,  i f  rap << m + --~ Ira-l, one has r<< re. Defining y+ = (1 - 1.)2/c2) -1/2, 
with v = r~to, where to is the angular velocity around the center of  mass, 
and y_ = ( 1 -  v2_/c2) -1/2, with v_ = (r~ + r)to, we find that momentum con- 
servation leads to 

m§ = Im-13,_( r~ + r) (44) 
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Fig. 2. Pole-dipole particle. 

For  r << rc we expand 

{ ~  , r c r ( - 0 2 3 '  2 , . 
3'_= y ~ i - r ~ - r  �9 .)  (45) 

putting henceforth y+--- 3'- 
For the mass dipole moment we have 

P = m + r  = i m _ l r  _ m+3'-Im-13"- rc (46) 
3'- 

With the help of  (45) and for -~ >> 1 we find 

rc ~- p32 / r np  (47) 

for the energy we find 

E / c  2= m = m+3 ' -  Irn-13'_ ~ - p T / r ~  (48) 

and finally, for the angular momentum (putting wr~ ~- c) 

J = [m+3"r 2 -  ] m - l y _ ( r  c + r)a]o~ ~- -p3"c  ~- - m c r ~  (49) 

Let us now assume that the two masses m + and rn- are initially exactly 
equal, but of  opposite sign. According to what we said above, the interaction 
energy of  two Planck masses mo is equal in magnitude to their gravitational 
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interaction at the distance of separation ro, which is equal to the Planck 
length. Since the virtual phonon force field causing this interaction follows 
an inverse square law, and since the gravitational interaction of two masses 
of opposite sign is positive, one may see what would happen if the mass 
pole of  the pole-dipole  particle comes from this interaction energy. One finds 

mpc 2 = Glm:~[z/ r (50)  

but because of  (47) and (48) one has 2 

m = rnplY  (51) 

and hence 

m c  2 = GIm 12/ r ( 5 2 )  

According to the correspondence principle, for angular momentum 
quantization one should put 3 J = - h ,  resulting, from (49), in rc = h / m c .  

Putting p = [m• one obtains from (48) 

 ,l,n• = ( 5 3 )  

Finally, eliminating yr  from (52) and (53) and solving for Irn~[, one finds 

I m • = (hmc /G)1 /3  (54) 

Inserting into (54) for rn the value of the electron mass, one has 

Im l = 8 • 10 -13 g (55)  

hence Irn• 2 ~  1012 GeV. This is a very large energy, but there is widespread 
belief in the existence of such an intermediate energy located between the 
electroweak and GUT energies. 

8. ORIGIN OF INERTIA AND MACH'S  PRINCIPLE 

Finally, our model is even able to make plausible the origin of inertia 
and through it the equivalence principle. In general relativity inertia is 
explained as a restraint force resulting from the restraint imposed by a 
noninertial reference system and expressed through Christoffel symbols. In 
the vortex sponge something like inertia results from the constraint div v = 0 
of  an incompressible fluid. Applying Newton's law of  motion, with the 
force density acting on a fluid element equal to -Vp,  we obtain Euler's 
equation 

dv 1 
- Vp  (56)  

dt p 

2The mass m of the circulating pole-dipole particle is reply rather than mpy because the 
orbital radius of the negative mass is larger by the distance r than its positive counterpart. 

3This value is suggested by the correspondence principle, whereas relatively leads to 
J = -(1/2)~. 



Low-Energy Consequences of High-Energy Quantum Chaos 1387 

which for an incompressible fluid has to be supplemented by the incompress- 
ibility condition div v = 0. Taking the divergence of Euler's equation, we 
obtain 

V 2 +~-  = div(vx curl v) (57) 

and hence 

p v 2 f div(v x curl v) 
p 2 . 4zrlr_r, [ dr '  (58) 

With the constraint div v = 0 one can therefore eliminate the pressure from 
Euler's equation, which thereby becomes the following integrodifferential 
equation: 

_ ( _ ~ ) J "  div(vxcurl v) dv V +V dr '  (59) 
dt 4~rlr-r '  I 

Unlike Euler's equation, it is independent of the mass density, suggest- 
ing a purely kinematic interpretation, very much like the equation of motion 
for a test body in general relativity, where the trajectory the test body follows 
does not depend on its mass. Because the integral in (59) expresses the 
instantaneous interaction with the vortex sponge filling all of space, it is 
reminiscent of Mach's principle for the origin of inertia. 

The surprising multifaced success of this simple vacuum model gives 
us reason to believe that "In the beginning was (quantum) chaos." 
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